The Effectiveness of Trichoderma viride in suppressing stem rot (Sclerotium rolfsii) and enhancing growth and yield of porang
Keywords:
Porang, Sclerotium Rolfsii, Stem rot, Trichoderma virideAbstract
Porang is a commodity that commands a high price due to the numerous benefits of its tubers. Root rot caused by Sclerotium Rolfsii is one of the main diseases affecting porang. One control measure that can be implemented is the use of the biological agent Trichoderma Viride. The aim of this study is to determine the most effective dose of T. viride in a solid formulation for controlling stem rot caused by S. rolfsii. This research was conducted at the Forecasting for Plant Pest Organisms facility in Jatisari, Karawang, from September 2021 to April 2022. The research design employed was a Completely Randomized Block Design (CRBD) with a single factor. The doses used were 0 (as control), 50, 75, 100, 125, and 150 grams per plant. T. viride was propagated using rice as the medium. The study involved six doses of T. viride in a solid formulation with four replications. Data analysis was performed using ANOVA at a 5% significance level, followed by DMRT at the same level. T. viride at a dose of 150 grams per plant resulted in the best suppression of root neck rot intensity at 69.17% and suppression of tuber rot percentage at 69.46%. The application of T. viride was able to increase the growth and yield of porang.
Downloads
References
Aktar, M. W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1–12. https://doi.org/10.2478/v10102-009-0001-7
Amaria, W., Harni, R., & Wardiana, E. (2018). Effect of Dosage and Frequency of Trichoderma Biofungicide Application on Rigidoporus microporus Infection in Rubber Seeds. Jurnal Tanaman Industri Dan Penyegar, 5, 49. https://doi.org/10.21082/jtidp.v5n2.2018.p49-58
Barus, S., Tarigan, R., & Hutabarat, R. C. (2018). Pengaruh Pemberian Tiga Isolat Trichoderma spp terhadap Pertumbuhan Vegetatif dan Produksi Kentang Var Granola. Jurnal Agroteknosains, 1(2). https://doi.org/http://dx.doi.org/10.36764/ja.v1i2.37
BSN. (2014). Biological Control Agent (BAC) Beauveria bassiana. Sni 8027.1:2014. https://pdfcoffee.com/sni-trichoderma-5-pdf-free.html
Contreras-Cornejo, H. A., Macías-Rodríguez, L., Alfaro-Cuevas, R., & López-Bucio, J. (2014). Trichoderma spp. Improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na+ elimination through root exudates. Molecular Plant-Microbe Interactions : MPMI, 27(6), 503–514. https://doi.org/10.1094/MPMI-09-13-0265-R
Contreras-Cornejo, H., Macías-Rodríguez, L., Vergara, A., & López-Bucio, J. (2015). Trichoderma Modulates Stomatal Aperture and Leaf Transpiration Through an Abscisic Acid-Dependent Mechanism in Arabidopsis. Journal of Plant Growth Regulation, 34, 425–432. https://doi.org/10.1007/s00344-014-9471-8
Garnica-Vergara, A., Barrera-Ortiz, S., Muñoz-Parra, E., Raya-González, J., Méndez-Bravo, A., Macías-Rodríguez, L., Ruiz-Herrera, L. F., & López-Bucio, J. (2016). The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. The New Phytologist, 209(4), 1496–1512. https://doi.org/10.1111/nph.13725
Goldman, G. H., Hayes, C., & Harman, G. E. (1994). Molecular and cellular biology of biocontrol by Trichoderma spp. Trends in Biotechnology, 12(12), 478–482. https://doi.org/10.1016/0167-7799(94)90055-8
Halifu, S., Deng, X., Song, X., & Ruiqing, S. (2019). Effects of Two Trichoderma Strains on Plant Growth, Rhizosphere Soil Nutrients, and Fungal Community of Pinus sylvestris var. mongolica Annual Seedlings. Forests, 10, 758. https://doi.org/10.3390/f10090758
Mahabbah, A. F., Aeny, T. N., & Maryono, T. (2014). PENGARUH Trichoderma spp. DAN FUNGISIDA SINTETIS TERHADAP PERTUMBUHAN Sclerotium rolfsii DAN KETERJADIAN PENYAKIT REBAH KECAMBAH KACANG TANAH. Jurnal Agrotek Tropika, 2(2), 208–214. https://doi.org/10.23960/jat.v2i2.2086
Ministry of Agriculture. (2018). Technical Instructions for Observation and Reporting of Plant Pest Organisms and the Impact of Climate Change (OPT-DPI).
Moreno-Ruiz, D., Lichius, A., Turrà, D., Di Pietro, A., & Zeilinger, S. (2020). Chemotropism Assays for Plant Symbiosis and Mycoparasitism Related Compound Screening in Trichoderma atroviride. Frontiers in Microbiology, 11, 601251. https://doi.org/10.3389/fmicb.2020.601251
Muhibuddin, A., Setiyowati, E. M., & Sektiono, A. W. (2021). Mechanism antagonism of Trichoderma viride against several types of pathogens and production of secondary metabolites. Agrosaintifika, 4(1), 243–253. https://doi.org/https://doi.org/10.32764/agrosaintifika.v4i1.2375
Mukherjee, M., Mukherjee, P. K., Horwitz, B. A., Zachow, C., Berg, G., & Zeilinger, S. (2012). Trichoderma-plant-pathogen interactions: advances in genetics of biological control. Indian Journal of Microbiology, 52(4), 522–529. https://doi.org/10.1007/s12088-012-0308-5
Nemcovic, M., Jakubíková, L., Víden, I., & Farkas, V. (2008). Induction of conidiation by endogenous volatile compounds in Trichoderma spp. FEMS Microbiology Letters, 284(2), 231–236. https://doi.org/10.1111/j.1574-6968.2008.01202.x
Oszust, K., Cybulska, J., & Frąc, M. (2020). How Do Trichoderma Genus Fungi Win a Nutritional Competition Battle against Soft Fruit Pathogens? A Report on Niche Overlap Nutritional Potentiates. International Journal of Molecular Sciences, 21(12). https://doi.org/10.3390/ijms21124235
Paulitz, T. C., & Bélanger, R. R. (2001). Biological control in greenhouse systems. Annual Review of Phytopathology, 39(1), 103–133. https://doi.org/https://doi.org/10.1146/annurev.phyto.39.1.103
Rodriguez-Kabana, R., Kelley, W. D., & Curl, E. A. (1978). Proteolytic activity of Trichoderma viride in mixed culture with Sclerotium rolfsii in soil. Canadian Journal of Microbiology, 24(4), 487–490. https://doi.org/10.1139/m78-079
Saleh, N., Rahayuningsih, A., & Budhi, S. (2015). Tanaman Porang: Pengenalan, Budidaya, dan Pemanfaatannya. Pusat Penelitian dan Pengembangan Tanaman Pangan. https://repository.pertanian.go.id/items/a3b1e1a8-84ee-4913-aa7c-c52bec0283ce/full
Singh, R., Singh, H. K., & Parmar, A. (2013). Integrated Management of Alternaria Blight in Linseed. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 83. https://doi.org/10.1007/s40011-012-0152-8
Siswanto, B., & Karamina, H. (2016). Persyaratan Lahan Tanaman Porang (Amarphopallus ancophillus). Buana Sains, 16(1), 57–70.
Suanda, I. W., & Ratnadi, N. W. Y. (2017). KARAKTERISASI MORFOLOGIS Trichoderma sp. isolat JB DAN DAYA ANTAGONISME TERHADAP PATOGEN PENYEBAB PENYAKIT REBAH KECAMBAH (Sclerotium rolfsii Sacc.) PADA TANAMAN TOMAT. https://api.semanticscholar.org/CorpusID:90492351
Wheatley, R., Hackett, C., Bruce, A., & Kundzewicz, A. (1997). Effect of substrate composition on production of volatile organic compounds from Trichoderma spp. Inhibitory to wood decay fungi. International Biodeterioration & Biodegradation, 39(2), 199–205. https://doi.org/https://doi.org/10.1016/S0964-8305(97)00015-2
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.